今天是 
公司新闻

枯草芽孢杆菌在肥料中作用机制

2015-11-25 浏览次数:0
 
枯草芽孢杆菌(Bacillus subtilis)是一种嗜温、好氧、产芽孢的杆状细菌,其生理特征多样,分布广泛,极易分离培养。该菌在自然界中广泛存在,对人畜无毒无害,不污染环境,能产生多种抗菌素和酶,具有广谱抗菌活性和极强的抗逆能力。枯草芽孢杆菌不仅可以在土壤、植物根际体表等外界环境中广泛存在,而且是植物体内常见内生细菌,尤其是在植物的根、茎部。目前该菌已经在水稻、大豆、棉花、小麦、辣椒、番茄、玉米等农作物上显示出很好的病害防治效果。
枯草芽孢杆菌通过成功定殖至植物根际、体表或体内,与病原菌竞争植物周围的营养,分泌抗菌物质以抑制病原菌生长,同时诱导植物防御系统抵御病原菌入侵,从而达到生防的目的。其主要防治对象为丝状真菌所引起的植物病害,如水稻纹枯病(Stagonospora curtisii)、小麦纹枯病(Rhizoctonia cerealis)、番茄叶霉病(Cladosporium fulvum)、豆类根腐病(Fusariurn graminerarum)(Rhizoctonia spp.)、苹果霉心病(Alternaria alternata)、棉花立枯病(Rhizoctonia solani)、棉花枯萎病(Fusarium oxysporum f.sp.vasinfectum)等。
1 营养和空间位点的竞争
竞争作用是生防微生物发挥作用的重要机制之一。微生物竞争作用主要包括营养竞争和位点竞争。营养和空间位点的竞争是指存在于同一微小生物环境中的2种或2种以上微生物之间争夺这一环境内的空间、营养、氧气等现象。营养竞争只在少数菌株中发现。研究表明,某些菌株通过产生一种嗜铁素(Siderophores)与环境中的铁离子高度结合,使植物病原菌缺乏铁营养而不能生长繁殖,从而占据一定的生态位。位点竞争指微生物在植物根际、体表或体内及土壤中定殖,大多数枯草芽孢杆菌菌株以位点竞争占优势。Bacon分离的玉米内生枯草芽孢杆菌与玉米病原真菌串珠镰孢菌(Fusarium moniliforme Sheldon)有相同的生态位。枯草芽孢杆菌能在玉米体内迅速定殖和繁殖,可有效降低串珠镰孢菌及其毒素(Myeotoxin)的积累。Asaka等研究表明,Bacillus subtilis RB14和NB22在土壤中以细胞存活一段时间后(大约14 d)主要以芽孢形式在土壤中长期存活。杜立新等通过扫描电镜观察发现,Bacillus subtilis BS-208菌株在番茄叶面分布不均,大多定殖于伤口周围、叶面凹陷处和绒毛根部,且能够在自然土壤和灭菌土中成功定殖,自然土中菌量低于在灭菌土中的菌量。何红等研究表明,辣椒内生枯草芽孢杆菌Bs-1和BS-2菌株通过浸种、灌根和涂叶处理,不仅可在辣椒体内定殖,而且可在番茄、茄子、黄瓜等多种非自然宿主植物体内定殖。
3.1.2 分泌抗菌物质
生防细菌防治植物病害发生发展的一个重要机制是产生拮抗物质。生防细菌的拮抗物质种类多,作用范围广谱。同一种拮抗物质可以由多种细菌菌株产生,而同一细菌也可以产生多种不同结构的拮抗物质。
自1945年Johnson等报道枯草芽孢杆菌产生抗菌物质后,半个多世纪以来人们从枯草芽孢杆菌的不同菌株中发现了60多种抗生素。枯草芽孢杆菌产生的抗菌物质大多为低分子抗菌肽,有环状肽或环状脂肽,也有线状肽,分子量约1000 Da(介于300~3 000 Da),但也有一些为蛋白类拮抗物。
3.1.2.1脂肽类抗生素
非核糖体途径合成的脂肽类抗生素(Lipopeptide Antibiotic)根据其结构上的差异分为伊枯草菌素(Iturin)家族、表面活性素(Surfactin)和Fengycin A、B,加上一些结构未知的环肽抗生素如Bacillus subtilis TG-26产生的一种新的抗真菌小肽LP-1。
3.1.2.2伊枯草菌素
伊枯草菌素是由枯草杆菌产生的一大类脂肽类化合物,家族成员包括Iturin A、B、C、D、E,芽孢菌素(Bacillomycin)D、F、L以及抗霉枯草菌素(Mycosubtilin)等。它们都是由7个氨基酸残基组成的一个肽环,其中包括一个不变的DTyr2以及一个稳定的手性顺序LDDLLDL,最后连接一个C14-C17的β-氨基脂肪酸(βAA,β-amino Fatty Acides)。它们对大多数的致病酵母和霉菌具有强烈的抗菌能力。Cho Soo-Jin等报道,抑制炭疽病害的B.subtilis KS03产生的主要抗菌化合物是分子量为1 042 Da的伊枯草菌素A2。Nakayana等研究表明,某些枯草芽孢杆菌能产生抗菌物质伊枯草素(Iturin) 。除了枯草芽孢杆菌,已有人从性质与枯草芽孢杆菌比较接近的解淀粉芽孢杆菌(B.amylollquefaciens)中分离到伊枯草菌素。张桂英等选择对甘蔗黑穗病菌有拈抗作用的5个革兰氏阳性芽孢杆菌拮抗菌株和3个革兰氏阴性拮抗细菌菌株,用PCR技术扩增抗霉菌枯草杆菌素操纵元中mycB基因引。结果是5个革兰氏阳性芽孢杆菌拈抗菌株均扩增出一条大小为2.0 kb左右的特异带,革兰氏阳性芽孢杆菌基因组的PCR产物和伊枯草菌素A合成酶操纵元中的ItuB基因的同源性为97%~98%,说明抗菌作用机制和Iturin类群脂肽抗生素的产生有关。
芽孢霉素D也属于伊枯草菌素家族。它的氨基酸顺序是L-Asn-D-Tyr-D-Asn -D-Pro-L-Glu-D-Ser-L-Thr。与Iturin家族其他成员有同样的Asx-Tyr-Asx顺序。Anne-Laure Moyne等报道,枯草芽孢杆菌AU195可以产生芽孢霉素D,抑制黄曲霉毒素产生菌黄曲霉(Aspergillus flavus)。
3.1.2.3 生物表面活性素
1968年,Arima等首次发现枯草芽孢杆菌株(Bacillus subtilis)产生的脂肽类表面活性剂,呈晶状,商品名为表面活性素(Surfactin)。生物表面活性素(Surfactin)为分子量约1 000 Da的环脂肽类物质,具有抗菌、抗病毒和生物表面活性剂作用。一般认为,由枯草芽孢杆菌产生的生物表面活性素无直接抗真菌能力,但是可以加强伊枯草菌素的抗真菌能力。Surfactin还能在植物的根部形成一层生物膜(Biofilm)。该膜能保护植物根部免受病原菌的入侵。枯草芽孢杆菌的S499菌株能同时产生表面活性素、伊枯草菌素和Fengyein三大类脂肽类抗生素。Surfactin是已发现的最强的一类生物表面活性剂,在医药、化妆品、微生物采油、环境治理等领域都有较好的应用前景。2003年高学文等研究发现,枯草芽孢杆菌B2菌株产生的胞外物质经盐酸沉淀、甲醇抽提,获得粗制备物。利用I-IPLC系统将粗制备物过Xterra RP18层析柱分离,获得的收集液抑制小麦赤霉病菌分生孢子萌发。通过LC-MS分析,发现B2菌株胞外存在3种抑菌物质,即脂肽类抗生素表面活性素、多烯类和一种分子量为564的结构未知的新物质。同年,他们利用MAL-DI- TOF-MS技术,鉴定了将lpaB3基因转入枯草芽孢杆菌Bacillus subtilis 168菌株所构建的工程菌GEB3产生的脂肽类抗生素种类。结果表明,GEB3仅产生表面活性素(Sufactin)一种脂肽类抗生素。经LC-MS分析,GEB3产生由13、14和15个碳原子的脂肪酸链构成的标准表面活性素变异体(Stan dard Surfactin Isoforms)。生物活性检测表明,该工程菌产生的脂肽类抗生素表面活性素具有抑制小麦纹枯病菌和稻瘟病菌菌丝生长的作用。2006年别小妹等报道,Bacillus subtilis fmbR菌株的抗菌物质由C13~C15的3种Surfactin A同系物和一种羊毛硫抗生素Subtilosin组成。
3.1.2.4 Fengycin
1978年台湾植物病理学家陈升明教授在丰原市郊马铃薯田中分离出Bacillus subtil F29-3。该菌株在田间试验中可有效抑制并预防由Pyricularia oryzae、Alternaria kikuchiana所造成的植物病害。Vanittanakom等经纯化和化学分析发现,Bacillus subtilis F29-3能产生一种抑制许多丝状真菌生长的脂肽类抗生素,命名为丰原素(Fengycin)。丰原素在分子结构上含有一个由10个氨基酸所组成的环状部分及1个长链的脂肪酸支链。它是一种利用非核糖体合成机制所合成的抗生素,其合成基因由fenC、fenD、fenE、fenA、fenB所组成。丰原素合成酶共包含10个间隔区(Module),每个间隔区均能活化一种氨基酸。这些被活化的氨基酸再依次连接,形成脂肽链。
Surfactin表现出抗病毒、抗肿瘤和抗支原体活性,作用机理是破坏病毒的脂膜。Iturin和Fengyein具有强抗真菌活性,机理是影响真菌细胞膜的表面张力,导致微孔的形成、K+及其他重要离子的渗漏,最后引起细胞死亡。脂肽类化合物可用于防治水稻稻瘟病、水稻纹枯病、小麦白粉病、小麦赤霉病、辣椒炭疽病、辣椒病毒病、番茄早疫病、番茄青枯病、黄瓜灰霉病、黄瓜霜霉病等植物病害以及蚜虫等虫害。
生防菌分泌的抗菌物质稳定性决定它对植物病原菌拮抗能力的持续性。有研究报道,枯草芽孢杆菌分泌的表面活性素(Surfactin)在土壤中的稳定性强于伊枯草菌素(Iturin)。土壤灌溉、土壤微生物的降解作用及抗生素与土壤中某些物质的结合都可能造成抗生素在土壤中含量的降低。
3.1.3 蛋白类抗菌物质
人们从部分拮抗细菌菌株中分离检测到蛋白类拮抗物质。这类物质包括一些酶类、抗菌蛋白和多肽类。目前已报道的枯草芽孢杆菌分泌的酶类有几丁质酶、Bacillomycin D snthetase C(309.04 kDa)、Putative sensorkinase(53.38 kDa)、Endo-1- 4-b-glucanase(46.60 kDa)、Bacillomycin D synthetase B(607.23 kDa)、Endo-1-b- xylanase(54.26 kDa)和Bacillomycin D synthetase A(448.21 kDa)等。几丁质酶是一种分解聚N-乙酰氨基葡萄糖分子的糖苷酶。Bacillus subtilis G3、地衣芽孢杆菌、短芽孢杆菌都可分泌产生几丁质酶。
国内研究者对枯草芽孢杆菌抗菌蛋白的研究主要集中在抗菌蛋白的产生条件及抗菌蛋白的分离提取上。关于抗菌蛋白的分离纯化,目前普遍采用硫酸铵盐析后分步柱层析等程序逐步纯化。1993年王雅平等从丝瓜根部分离到一株强烈抑制玉蜀黍赤霉病菌的拮抗菌Bacillus subtilis TG26,并且从中分离到2种分子量为14和14.5 kDa的拮抗蛋白。这2种蛋白除对玉蜀黍赤霉病菌多个生理小种表现出强烈抑制作用外,对水稻稻梨孢、长柄链格孢、玉米小斑病菌及绿色木霉也有强烈的抑制作用。1998年谢栋等从对苹果轮纹病菌具强拮抗作用的B.subtilis BS-98菌株中纯化出抗菌蛋白X98Ⅲ,分子量为59 kD,等电点为4.5。糖、脂特异染色证明,X98Ⅲ为一种含糖和脂的蛋白,对苹果轮纹病、芦笋茎枯病都有很强的抑制作用。抑菌机理主要是溶解细胞壁,造成菌丝畸形、孢子不发芽或发芽异常。童有仁等研究了对水稻白叶枯病菌具拮抗能力的枯草芽孢杆菌B-034的抗菌物质,其作用活性的pH范围为4~12,对热稳定。粗提液经Phenyl Sepharose CL-4B柱层析、DEAE Sephacel柱层析和HPLC的Superdex75HR10/30柱层析,得到2个拮抗活性峰——P1和P2。蛋白电泳和等电点电泳显示,P2为单一蛋白带,分子量为50.3 kD,等电点为6.25。经自动Edman降解法检测和计算机检索,发现P2是一种新的功能蛋白。2005年刘永峰等用硫酸铵分级沉淀枯草芽孢杆菌B-916胞外抗菌蛋白质,共获得8个蛋白质粗提物,其中硫酸铵饱和度为40%~50%和50%~60%提取的粗蛋白质对水稻纹枯病菌和水稻恶苗病菌有较强的抑菌活性,对马铃薯晚疫病菌则没有抑菌活性,经sephadex G-100层析后检测到4个蛋白质吸收峰。2007年报道从B.subtilis B-916中分离到一种新蛋白Bacisubin,分子量为41.9 kD。该蛋白具有核糖核酸酶活性和使红血球凝聚的活性,不具蛋白酶活性和蛋白酶抑制剂活性。Bacisubin对稻瘟病菌(Magnaporthe gmease)、菌核菌(Sclerotinia sclerotiorum)、立枯丝核病菌(Rhizoctonia solani)、甘蓝和花揶菜、白菜黑斑病菌(Alternaria oleracea Alternaria brassicae)、灰霉病菌(Botrytis cinerea)具有抑制作用。Bacisubin使得Rhizoctonia solani菌丝顶端分枝、扭曲、肿大、破裂。从枯草芽孢杆菌B29菌株的发酵上清液中经DEAE-52离子交换层析和Bio-GelRP-100凝胶层析分离纯化到抗菌蛋白B291,分子量约为42.3 kD,等电点为5.69。抗菌蛋白B29I可推迟黄瓜枯萎病菌孢子的萌发时问,并可强烈抑制芽管伸长。分泌抗菌蛋白的枯草芽孢杆菌还有B.suhtilis B3、H110 B9601菌株。另外,枯草芽孢杆菌A430及内生枯草芽孢杆菌BS-2菌株也分泌抗菌多肽。
由此可见,不同拮抗枯草芽孢杆菌分泌产生的抗菌蛋白对多种植物病原菌具有强烈抑制作用。其抗病机制包括抑制病原菌孢子产生和萌发,使得菌丝畸形,细胞壁溶解,原生质泄露。新抗菌蛋白的获得将为抗菌基因的克隆和转抗菌蛋白基因植物的研究奠定理论和试验基础。
3.1.4 溶菌作用
  溶菌作用是拮抗微生物通过吸附在病原真菌的菌丝上,并随着菌丝生长而生长,产生溶菌物质消解菌丝体,使菌丝发生断裂、解体、细胞质消解,有的菌丝原生质凝结;或者是次生代谢产物对病原菌孢子的细胞壁产生溶解作用,致使细胞壁产生穿孔、畸形等现象。林福呈等在分离了976株细菌分离物后,发现来自甘蔗根围的一株枯草芽孢杆菌S9对立枯丝核菌(Rhizoctonia solani)、终极腐霉(Pythium ultimum)和西瓜枯萎病菌(Fusarium oxysporm f.sp.niveum)在PDA平板上的对峙培养过程中不形成抑菌圈,但4 d后使上述植物病原真菌的菌丝溶解。扫描电镜观察发现,S9菌株在待测的立枯丝核菌表面形成了溶菌斑。S9菌株对立枯丝核菌的作用过程是通过吸附在病原真菌的菌丝上,并随着菌丝生长而生长,而后产生溶菌物质消解菌丝体。许多B.subtilis类拮抗体产生的次生性代谢物质对病原菌的菌丝或孢子的细胞壁产生溶解作用,致病菌细胞壁穿孔、畸形、菌丝断裂、原生质消解、外溢而丧失活力。例如,B.subtilis PRS5菌株的代谢产物可使R.solani菌丝分隔增多、隔间变短、胞内原生质消解、胞壁大量穿孔或不规则消解、菌丝缩短、断裂、原生质外溢解体而失活。B.subtilis B-916产生的抗菌物质Bacisubin能使Rhizoctonia solani菌丝顶端肿大、破裂。
  3.1.5 诱导抗性
  植物的诱导抗病性即各种胁迫、刺激引发的植物对病原物致病性的抵抗作用。这些诱导因子通过激活植物的天然防御机制,使植物免受病原物危害或减轻危害。近年一些研究表明,一些病原菌进入免疫植株的穿入能力因免疫植株抑制其发育、侵入和增殖而明显降低。经诱导处理的植株有些明显降低了菌分生孢子萌发和吸器的穿入程度,有的则是菌穿人后植株迅速木质化,并伴随过氧化物酶活性的增强,因此诱导抗病性机制是复杂的。目前揭示的抗病机制表现在:①诱导木质素形成和伸展蛋白(HRGP)的积累;②诱导植保素(Phytoalexins) 沉淀;③诱导病程相关蛋白PRP的产生;④诱导酚物质的积累;⑤诱导寄主防御酶活力。
  寄主防御酶系主要包括苯丙氨酸解氨酶(PAL)、过氧化物酶(PO)、多酚氧化酶(PPO)、超氧化物歧化酶(SOD)、β-1,3-葡聚糖酶、几丁质酶等。许多研究表明,植物抗病品种或诱导产生的抗性植株体内酶活性增强,并有PO特异同工酶的出现:PAL是莽草酸代谢途径的定速酶,是酚、植保素、木质素等抗菌物质合成过程中的关键酶。PO及同工酶在上述抗菌物质合成过程中起重要作用。在酶谱上,抗病强的谱带表现增强,PO与乙烯的合成和吲哚乙酸的作用有关,2种激素会影响代谢的巨变,并与PO一起影响酚的代谢。PPO的主要功能是将酚氧化成毒性更强的醌,PPO的升高有利于酚类物质积累和醌的大量形成。酚为木质素的前体。醌能引起植株过敏抗性反应,甚至PPO本身对植物病害也有抑制作用。植物诱导抗性的产生是通过防御酶系活动而实现的,这些酶活性与抗病性呈正相关。
  近年研究发现,诱导植物抗性也是枯草芽孢杆菌生防作用的重要机制之一 一。Bacillus subtilis FZB24(r)产生与植物抗性蛋白合成基因表达相关的信号蛋白,诱导植物抗性,也通过分泌相关蛋白如丝氨酸专性肽链内切酶(Serinespecific endopeptidases)直接诱导植物抗性。Bacillus subtilis AF1处理木豆种子能诱导木豆苯丙氨酸解氨酶(PAL)活性增加。Bacillus subtilis IN937也能诱导黄瓜对Envinia tracheiphila的抗性。水稻纹枯病生防菌B-916能诱导水稻叶鞘细胞PAL、PO、PPO和SOD活性增强,且分别在24、48、72和24 h达到最高。Tang等研究也发现,Bacillus subtilis B3能诱导小麦PO活性的增加并产生新的PO。徐韶等在对甜瓜枯萎病温室防效试验的研究中发现,内生枯草芽孢杆菌B6菌株与绿色木霉T23菌株复合处理的相对防效达82.22%,比B6和T23的单独处理分别提高32.8%和146.7%。研究表明,内生细菌B6和木霉T23复合接种,其苯丙氨酸解氨酶、过氧化物酶、多酚氧化酶和β-1,3-葡聚糖酶比活性比单独接种有不同程度的增强。这种变化在挑战接种甜瓜枯萎病菌之后更加明显。拮抗菌处理后诱导植物体内产生一些有益于植物抗病性增强的生理生化反应,是拮抗菌制剂防病的重要机理。枯草芽孢杆菌不但能抑制植物病原菌,而且能通过诱发植物自身抗病机制增强植物的抗病性能,即诱导植物抗病性作用,是生防菌发挥生防作用的一个重要方面。
  3.1.6 促进植物生长
  在植物根际生活的一类具有刺激植物生长和抑制植物病原菌等综合作用的细菌群叫促进植物生长根际细菌(Plant Growth Promoting Rhizobacteria),简称PGPR。除上面三种直接作用的生防机制外,1998年发现生防枯草芽孢杆菌能促进植物根系及植株生长,增强了植物的抗病性,从而间接地减少病害发生。胡小加等研究发现,枯草芽孢杆菌Tu-100对油菜、小麦、辣椒、西瓜、大豆和玉米苗期均有不同的促生效果。蔡学清等对辣椒内生枯草芽孢杆菌BS-2的研究证明,BS-2对辣椒苗有明显的促生作用,同时,该菌株还可诱导辣椒体内吲哚乙酸等促进植物生长的激素含量提高,并降低脱落酸等抑制植物生长激素的形成。
 
 
 
 
济南网站建设 济南网站制作 网站建设 网站制作